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Abstract
The Bäcklund transformation for the discrete Korteweg–de Vries equation is
introduced in the bilinear form. The superposition formula is also derived
from the transformation. An ultradiscrete analogue of the transformation is
presented by means of the ultradiscretization technique. This analogue gives
the Bäcklund transformation for the box and ball system. The ultradiscrete
soliton solutions for the system are also discussed with explicit examples.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

The Bäcklund transformation has played an important role in the development of soliton
theory. In the case of the Korteweg–de Vries (KdV) equation,

wt − 3wx
2 + wxxx = 0, (1)

the Bäcklund transformation between two solutions, w1 and w2, is given by

(w1 + w2)x = 2λ + 1
2 (w1 − w2)

2 (2a)

(w1 − w2)t = 3
(
w1x

2 − w2x
2) − (w1 − w2)xxx, (2b)

where λ is a parameter. Integrating (2) with a given (N − 1)-soliton solution w1 and λ,
we obtain the N-soliton solution w2 in principle. Furthermore, there exists ‘superposition
formula’ [1]

w12 = w0 − 4(λ1 − λ2)

w1 − w2
, (3)
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which is an algebraic relation among four solutions, w0, w1, w2 and w12. In the case of the
soliton solution, if w0 is the (N − 1)-soliton solution and wi (i = 1, 2) are the N-soliton
solutions, w12 is the (N + 1)-soliton solution. The Bäcklund transformation in the bilinear
form is also presented by Hirota [2]. The bilinear form gives us a clear viewpoint in the
structure of solutions written in terms of the Wronskian [3, 4]. The bilinearizing technique
(see, for example, [5]) also clarifies the relationship among the Bäcklund transformation, the
Miura transformation [6] and the inverse scattering method [7].

Discrete analogues of the Bäcklund transformation are also discussed for the discrete
KdV (dKdV) equation. Hirota presents the discrete Bäcklund transformation in terms of the
bilinear form [8]. Nijhoff et al give it in the context of the inverse scattering setting (see, for
example, [9]). Schiff studies the discrete KdV equation by means of loop group methods and
presents a discrete analogue of the superposition formula [10].

Cellular automaton (CA) is a discrete dynamical system which consists of a regular array
of cells. Each cell takes a finite number of states updated by a given rule in discrete time steps.
Although the updating rule is usually simple, CAs may capture the essential mechanisms for
many physical, social or biological phenomena (see, for example, [11]). Moreover, CAs are
suitable for computer experiments since all variables take discrete values. Ultradiscretization
[12] is a procedure transforming a given discrete equation into a CA (or an ultradiscrete
system). In general, to apply this procedure, we first replace a dependent variable a in a given
equation with a new variable A by a = eA/ε upon introduction of a parameter ε > 0. Then in
the limit ε → +0, addition, multiplication and division of the original variables are replaced
with max[∗, ∗], addition and subtraction for the new ones, respectively. It is an interesting
problem to study the structure preserved in ultradiscretization of an integrable system by
means of this procedure. The ultradiscrete analogue of the KdV equation is known as the
soliton cellular automaton [13], or the box and ball system (BBS) [14]. In [15], we propose
an ultradiscrete analogue of the Miura transformation and report its connection with the box
and ball system with a carrier [16]. Shinzawa and Hirota discuss an ultradiscrete analogue
of the Bäcklund transformation for the discrete Kadomtsev–Petviashvili (dKP) equation and
give the ultradiscrete one-, two- and three-soliton solutions in a priori way [17], while they
do not consider explicit relationship between the ultradiscrete solutions and those of the dKP
equation.

In section 2, we introduce the Bäcklund transformation for the dKdV equation and show
the way of constructing soliton solutions through the transformation. We also present a
superposition formula for the dKdV equation which is a different form from the one in [10].
Then in section 3 we construct the ultradiscrete analogue of the Bäcklund transformation
and present the ultradiscrete soliton solutions. We also discuss the connection between the
discrete soliton solutions and the ultradiscrete ones. Finally, concluding remarks are given in
section 4.

2. Discrete system

The dKdV equation is written in the bilinear form

f t−1
j f t−1

j−1 + γf t
j−1f

t−2
j = (1 + γ )f t−2

j−1f
t
j , (4)

where γ is a parameter. Its N-soliton solution is given in terms of the determinant of size
N × N [18],
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gtjkI kI I

f t
j ht

j

kI I kIg̃tj

Figure 1. Superposition diagram.

f t
j =

∣∣∣∣∣∣∣∣∣∣∣∣

c1k1
2(N−1)

X1
+

d1X1

k1
2(N−1)

· · · c1k1
2(N−l)

X1
+

d1X1

k1
2(N−l)

· · · c1

X1
+ d1X1

...
...

...
...

...

cNkN
2(N−1)

XN

+
dNXN

kN
2(N−1)

· · · cNkN
2(N−l)

XN

+
dNXN

kN
2(N−l)

· · · cN

XN

+ dNXN

∣∣∣∣∣∣∣∣∣∣∣∣
, (5)

where ci, di, ki (i = 1, 2, . . . , N) are parameters and Xi := ki
jωi

t . Here, ωi is a parameter
satisfying the dispersion relation

γ = 1 − ki
2ωi

2(
ki

2 − 1
)(

ωi
2 + 1

) . (6)

Note that we may put ci = 1/di or ci = −1/di without loss of generality. The Bäcklund
transformation of the dKdV equation may be written as

(kN + 1/kN)(ωN + 1/ωN)(1 + γ )f t
j gt−1

j−1 = (ωN + 1/ωN)(1 + 2γ )f t
j−1g

t−1
j

+ (kN + 1/kN)f t−1
j gt

j−1, (7a)

(kN + 1/kN)(ωN + 1/ωN)(1 + γ )f t−1
j−1g

t
j = (kN + 1/kN)f t

j−1g
t−1
j

+ (ωN + 1/ωN)(1 + 2γ )f t−1
j gt

j−1. (7b)

If we take the (N − 1)-soliton solution (5) of size (N − 1) × (N − 1) for gt
j in (7), then f t

j

becomes the N-soliton solution (5) of size N × N .
Let us study the superposition formula in the discrete system. For this purpose, we

consider the diagram in figure 1. Under this setting, we have the eight relations, namely, (7)
for f t

j , gt
j with kI, for f t

j , g̃t
j with kII, for gt

j , h
t
j with kII and for g̃t

j , h
t
j with kI. By eliminating

the dependent variables with the argument t −1 from these relations, we obtain a superposition
formula

ρ = ρ0
(kI + 1/kI)ρI − (kII + 1/kII)ρII

(kII + 1/kII)ρI − (kI + 1/kI)ρII
, (8)

where ρ0 := f t
j−1

/
f t

j , ρI := gt
j−1

/
gt

j , ρII := g̃t
j−1

/
g̃t

j and ρ := ht
j−1

/
ht

j . Moreover, by
eliminating the dependent variables with the argument j − 1, we have another superposition
formula

σ = σ0
(ωI + 1/ωI)σI − (ωII + 1/ωII)σII

(ωII + 1/ωII)σI − (ωI + 1/ωI)σII
, (9)

where σ0 := f t−1
j

/
f t

j , σI := gt−1
j

/
gt

j , σII := g̃t−1
j

/
g̃t

j and σ := ht−1
j

/
ht

j . These formulae
give discrete analogues of (3). In fact, if we introduce a proper continuous limit [19], then
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these superposition formulae reduce to (3). We note that (8) and (9) are in the same form
except for the parameters (wave number in (8) and frequency in (9)).

Let us give an example of the relation among solutions in the superposition formula (8).
If we take the vacuum solution ρ0 = 1 and the one-soliton solutions,

ρI =
d1X1
k1

+ k1
d1X1

d1X1 + 1
d1X1

(10)

ρII =
d2X2
k2

− k2
d2X2

d2X2 − 1
d2X2

(11)

in (8), then ρ gives the regular two-soliton solution,

ρ =
d1d2X1X2

k1k2
+ A12

k2d1X1
k1d2X2

+ A12
k1d2X2
k2d1X1

+ k1k2
d1d2X1X2

d1d2X1X2 + A12
d1X1
d2X2

+ A12
d2X2
d1X1

+ 1
d1d2X1X2

, (12)

where A12 := (
k1

2k2
2 − 1

)/(
k2

2 − k1
2
)
.

3. Ultradiscrete system

Let us consider an ultradiscrete analogue of the Bäcklund transformation. We rewrite the
Bäcklund transformation into the form convenient to ultradiscretize. We first define

φt
j := f t

j−1

f t
j

, ψt
j := gt

j−1

gt
j

. (13)

In terms of φt
j and ψt

j , the Bäcklund transformations (7) are rewritten as

(kN + 1/kN)2(1 + γ )2φt−1
j ψt−1

j +

{
(1 + 2γ )2 − (kN + 1/kN)2

(ωN + 1/ωN)2

}
φt

jψ
t
j

= (kN + 1/kN)(1 + γ )(1 + 2γ )
(
ψt−1

j ψt
j + φt−1

j φt
j

)
(14a)

φt
j

ψt
j

= (ωN + 1/ωN)(1 + 2γ )ψt−1
j + (kN + 1/kN)φt−1

j

∏j−1
l=−∞

(
φt−1

l ψt
l

)/(
φt

l ψ
t−1
l

)
(ωN + 1/ωN)(1 + 2γ )φt−1

j + (kN + 1/kN)ψt−1
j

∏j−1
l=−∞

(
φt

l ψ
t−1
l

)/(
φt−1

l ψt
l

) . (14b)

Note that (14a) is an ordinary difference equation. If we introduce a proper continuous limit,
these formulae reduce to (2). It can be easily shown that the (N − 1)- and N-soliton solutions
constructed from determinant (5) actually satisfy (14).

In order to ultradiscretize (14), we set

ki = eKi/ε, ωi = e	i/ε, γ = e
/ε. (15)

If we impose ki > 1, then from the dispersion relation (6) we should have ωi < 1/ki (< 1),
which gives Ki > 0 and 	i < 0. Substituting (15) into (6), applying ε log to the both sides of
(6) and taking the limit ε → +0, we find that (6) is reduced to 
 = −2Ki . On the other hand,
if we impose 0 < ki < 1, then we have Ki < 0,	i > 0 and 
 = 2Ki . Thus, the dispersion
relation in the ultradiscrete system may be written as

Ki	i < 0, 
 = −2|Ki | < 0. (16)

This relation means that any Ki only depends on the system parameter 
. Instead, 	i’s
are arbitrary constants, which play the roles of soliton parameters. If we put φt

j = e�t
j /ε and
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ψt
j = e�t

j /ε and take a limit similar to the above, (14) is reduced to the Bäcklund transformation
between �t

j and �t
j ,

max
[
�t−1

j + �t−1
j + |KN |,�t

j + �t
j − |KN |] = max

[
�t−1

j + �t
j ,�

t−1
j + �t

j

]
(17a)

�t
j − �t

j = max

[
�t−1

j + |	N |, |KN | + �t−1
j +

j−1∑
l=−∞

(
�t−1

l − �t−1
l

) −
j−1∑

l=−∞

(
�t

l − �t
l

)]

− max

[
�t−1

j + |	N |, |KN | + �t−1
j +

j−1∑
l=−∞

(
�t

l − �t
l

) −
j−1∑

l=−∞

(
�t−1

l − �t−1
l

)]
.

(17b)

Since (14) are discrete analogues of (2), these formulae are the ultradiscrete analogues of the
Bäcklund transformation. It is to be noted that if we put f t

j = eF t
j /ε and gt

j = eGt
j /ε, the

ultradiscrete analogues of (7) are written as

F t
j + Gt−1

j−1 = max
[
F t

j−1 + Gt−1
j − |KN |, F t−1

j + Gt
j−1 − |	N |] (18a)

F t−1
j−1 + Gt

j = max
[
F t

j−1 + Gt−1
j − |	N |, F t−1

j + Gt
j−1 − |KN |]. (18b)

It is possible to give the ultradiscrete soliton solutions by ultradiscretizing determinant
(5). We set ci = (−1)i+1/di and replace ki, ωi by (15) and di by eδi/ε in (5), respectively. Then
at the limit ε → +0 the vacuum solution f t

j = 1 is reduced to F t
j = 0 and the one-soliton

solution f t
j = d1X1 + 1

d1X1
is reduced to

F t
j = max[−K1j − 	1t − δ1,K1j + 	1t + δ1]. (19)

Similarly, we have the ultradiscrete two-soliton solution,

F t
j = max

[−(K1 + K2)j − (	1 + 	2)t − δ1 − δ2,

(K1 − K2)j + (	1 − 	2)t + δ1 − δ2 + 2K1,
(20)

(K2 − K1)j + (	2 − 	1)t − δ1 + δ2 + 2K1,

(K1 + K2)j + (	1 + 	2)t + δ1 + δ2
]
,

and so on. Note that (13) give the relations

�t
j = F t

j−1 − F t
j , �t

j = Gt
j−1 − Gt

j . (21)

By employing these relations, the soliton solutions �t
j and �t

j satisfying (17) are constructed
from a given F t

j and Gt
j , respectively.

Finally, we study the Bäcklund transformation for the BBS. Let us introduce dependent
variables,

bt
j := φt

j

φt−1
j

, b′t
j := ψt

j

ψt−1
j

. (22)

Both of them obey a discrete analogue of the KdV equation [15],

bt+1
j = 1 + γ

γ bt
j +

∏j−1
l=−∞

(
bt+1

l

/
bt

l

) . (23)
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Rewriting (14), we find that the Bäcklund transformation between bt
j and b′t

j is given by

(kN + 1/kN)2(1 + γ )2 +

{
(1 + 2γ )2 − (kN + 1/kN)2

(ωN + 1/ωN)2

}
bt

j b
′t
j

= (kN + 1/kN)(1 + γ )(1 + 2γ )

(
b′t

j

t−1∏
m=−∞

b′m
j

bm
j

+ bt
j

t−1∏
m=−∞

bm
j

b′m
j

)
(24a)

bt
j

b′t
j

= (ωN + 1/ωN)(1 + 2γ )
∏t−1

m=−∞ b′m
j /bm

j + (kN + 1/kN)
∏j−1

l=−∞ b′t
l /bt

l

(ωN + 1/ωN)(1 + 2γ )
∏t−1

m=−∞ bm
j /b′m

j + (kN + 1/kN)
∏j−1

l=−∞ bt
l /b

′t
l

. (24b)

If we put bt
j = eBt

j /ε, b′t
j = eB ′t

j /ε and take the limit ε → +0, we have

Bt
j = �t

j − �t−1
j , B ′t

j = �t
j − �t−1

j (25)

from (22) and

Bt+1
j = min

[
−
 − Bt

j ,

j−1∑
l=−∞

(
Bt

l − Bt+1
l

)]
(26)

from (23). Furthermore, we obtain the ultradiscrete analogues of (24),

max
[|KN |, Bt

j + B ′t
j − |KN |]

= max

[
B ′t

j +
t−1∑

m=−∞

(
B ′m

j − Bm
j

)
, Bt

j +
t−1∑

m=−∞

(
Bm

j − B ′m
j

)]
(27a)

Bt
j − B ′t

j = max

[
|	N | +

t−1∑
m=−∞

(
B ′m

j − Bm
j

)
, |KN | +

j−1∑
l=−∞

(
B ′t

l − Bt
l

)]

− max

[
|	N | +

t−1∑
m=−∞

(
Bm

j − B ′m
j

)
, |KN | +

j−1∑
l=−∞

(
Bt

l − B ′t
l

)]
. (27b)

By employing (25) we may construct soliton solutions of the BBS from F t
j and Gt

j through
(21).

Let us give examples of relating the soliton solutions through the Bäcklund transformation.
We consider the case of 
 = −1. Then we have the BBS with the capacity of box 1 and
the parameters Ki = ±1/2. Hereafter, we only take Ki = 1/2 for simplicity. If we give the
vacuum solution Gt

j = 0 and a soliton parameter 	1 = −1 in (18), then we have

F t
j = max

[− 1
2j + t − δ1,

1
2j − t + δ1

]
. (28)

The one-soliton solution Bt
j constructed from (28) describes a soliton with amplitude 2 (see

figure 2). Next, giving (28) as Gt
j and a new soliton parameter 	2 = −3/2 in (18), we have

F t
j = max

[−j + 5
2 t − δ1 − δ2,

1
2 t + δ1 − δ2 + 1,− 1

2 t − δ1 + δ2 + 1, j − 5
2 t + δ1 + δ2

]
. (29)

The two-soliton solution Bt
j constructed from (29) describes the soliton interaction between

the soliton with amplitude 2 and a new soliton with amplitude 3 (see figure 3).
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Figure 2. One-soliton solution Bt
j constructed from (28).

Figure 3. Two-soliton solution Bt
j constructed from (29).

4. Concluding remarks

We have introduced the Bäcklund transformation for the dKdV equation in the bilinear form
and shown the way of constructing soliton solutions by the transformation. Moreover, we
have presented two types of superposition formulae for the dKdV equation, which are in rather
symmetric form.

We have presented the ultradiscrete analogue of the Bäcklund transformation and
discussed the construction of ultradiscrete soliton solutions through the transformation.
Furthermore, we have given the Bäcklund transformation for the BBS and shown examples
of its soliton solutions related through the transformation. However, a difficulty arises
in ultradiscretizing the superposition formula, since the singular (nonpositive definite)
solution (11) appears in the discrete superposition formula (8) as we have shown in section 2.

It is well known that in the BBS any state consists only of solitons. The close connection
between the Bäcklund transformation and the inverse scattering method is also well known
for the KdV equation. It is an interesting problem to investigate initial value problems of the
ultradiscrete KdV equation by applying our results.
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